Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.	01.05 ПРОФЕССИОНАЛЬНЫЙ ЦИКЛ
	Теория растворов
наименование	дисциплины (модуля) в соответствии с учебным планом
Направление подгото	овки / специальность
	04.04.01 Химия
Направленность (про	офиль) 04.04.01.07 Физическая химия
Форма обучения	очная
Год набора	2022

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
канд.х	ким. наук, доцент, Денисова Л.Т.
	попучость инишизант фэмициа

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Цель изучения дисциплины — получение обучающимися углубленных знаний о теориях химического взаимодействия между компонентами раствора, что позволит целенаправленно регулировать многие технологические процессы, в том числе такие, получение материалов с заданными свойствами; совершенствование в экологическом и физико-химическом плане уже существующих технологий.

1.2 Задачи изучения дисциплины

Основными задачами изучения дисциплины является ознакомление обучающихся с основными теориями, описывающими свойства растворов, способами расчета термодинамических величин применительно к различным типам растворов.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции Запланированные результаты обучения по дисциплине						
	работу и выбирать адекватные методы решения ач в выбранной области химии, химической					
технологии или смежных с хим	=					
ПК-1.1: Составляет общий план исследования и детальные планы отдельных стадий	Знать основные принципы составления плана исследований Уметь составлять план исследований Владеть адекватными методами при сосавлении					
ПК-1.2: Выбирает	плпна исследований Знать способы учета материальных и временных					
экспериментальные и расчетно-теоретические	ресурсов для решения поставленной экспериментальной задачи					
методы решения поставленной задачи исходя	Уметь выбирать экспериментальные или /и расчетно-теоретические методы для решения поставленной					
из имеющихся материальных и временных ресурсов	задачи Владеть методологией выбора решения поставленной задачи					
ПК-1.3: Организует и проводит предпроектные исследования технических и	Знать функциональные характеристики материалов для проведения исследований Уметь организовывть и проводить предпроектные					
функциональных характеристик продуктованалогов	исследования Владеть организаторскими способностями для проведения предпроектных исследований					

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,5 (54)	
занятия лекционного типа	0,5 (18)	
практические занятия	0,5 (18)	
лабораторные работы	0,5 (18)	
Самостоятельная работа обучающихся:	0,5 (18)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	
Промежуточная аттестация (Экзамен)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

			Контактная работа, ак. час.							
№ п/п	Молупи темы (разлены) писциппины		Занятия лекционного типа		Занятия семин Семинары и/или Практические занятия		нарского типа Лабораторные работы и/или Практикумы		ятельная ак. час.	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	
1. Oc	новные этапы в развитии теории растворов									
	1. Введение. Общая характеристика растворов. Основные теории растворов.	2								
	2. Растворы. Способы выражений концентраций. решение задач на переход от одной концентрации к другой.			2						
	3. Понятие о растворенном веществе и растворителе. Способы выражений концентрации.							2		
	4. Термодинамическое и молекулярно-кинетическое условие образования растворов.	2								
	5. Термодинамическая характеристика процессов сольватации ионов.			2						
	6. Сольватация ионов и молекул неорганических веществ и органических молекул.							2		

7. Свойства и структурные особенности растворителей и растворов.	1				
8. Классификация растворителей: по физическим константам, кислотно-основным свойствам, образованию водородной связи, донорно-акцепторной способности и др.				1	
2. Термодинамическая теория растворов					
1. Термодинамические соотношения, используемые в термодинамике растворов. Основные методы определения парциальных молярных величин. Активность. Коэффициент активности.	1				
2. Решение задач на применение первого и второго уравнений Гиббса – Дюгема.		2			
3. Характеристические функции. Экстенсивные и интенсивные свойства системы. Методы определения парциальных молярных величин.				2	
4. Определение и термодинамические свойства идеальных растворов. Условия идеальности растворов. Мольный объем, энтальпия, энтропия и энергия Гиббса идеального раствора. Равновесие идеальный раствор — пар. Равновесие идеальный раствор — твердая фаза. Температуры кипения и замерзания идеальных растворов. Осмотическое давление идеального раствора. Уравнения Ван-Лаара и Вант-Гоффа.	2				
5. Законы Рауля и Генри. Летучесть компонента. Уравнение Шредера – Ван-Лаара.		2			
6. Классификация идеальных растворов.				2	
7. Определение давления насыщенного пара легколетучей жидкости			4		

		1	1	l		1
8. Термодинамическая теория бесконечно разбавленных растворов. Общая характеристика разбавленных растворов. Объем, внутренняя энергия и теплоемкость. Равновесия разбавленный раствор — пар, разбавленный раствор — твердая фаза. Выполнимость закона Генри.	2					
9. Проверка выполнимости закона Генри.		2				
10. Температуры кипения и замерзания, осмотическое равновесие в бесконечно разбавленных растворах.					2	
11. Термодинамическая теория неидеальных растворов. Классификация неидеальных растворов. Зеотропные и азеотропные растворы. Термодинамическая классификация неидеальных растворов: регулярные и атермические.	2					
12. Описание термодинамики неидеальных растворов с помощью активностей и коэффициентов активностей: симметричная и несимметричная система сравнения.		2				
13. Определение состава равновесных фаз и их количественного соотношения по диаграммам состояния.			4			
14. Классификация бинарных жидких систем по типу фазовых диаграмм					2	
15. Влияние внешних условий на равновесие сосуществующих фаз. Двухкомпонентные системы. Равновесие жидкость – пар.	2					
16. Законы Гиббса-Коновалова и Вревского.		2				
17. Исследование равновесия кристаллы – жидкий раствор в бинарных системах органических веществ			4			

18. Методы определения активностей и коэффициентов активностей.				2	
19. Растворы электролитов. Электростатическая теория. Основные понятия электростатической теории сильных электролитов Дебая и Хюкеля.	2				
20. расчет термодинамических параметров растворов электролитов		2			
21. Определение коэффициента активности и активности электролита			4		
22. Электролиты. Сильные и слабые электролиты. Электролитическая диссоциация, сильные и слабые электролиты. Средние ионные коэффициенты активности. Особенности оптических и термодинамических свойств сильных электролитов.				1	
23. Термодинамические свойства ионов. Термодинамика ионной сольватации. Особенности оптических и термодинамических свойств сильных электролитов.	2				
24. Термодинамика расторов электролитов.		2			
25. защита последней лабораторной работы			2		
26. Подготовка к экзамену				2	
Всего	18	18	18	18	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Дуров В. А., Агеев Е. П. Термодинамическая теория растворов: учеб. пособие для студ. вузов по спец. 011000 "Химия" и по напр. 510500 "Химия" (Москва: URSS).
- 2. Бажин Н. М., Иванченко В. А., Пармон В. Н. Термодинамика для химиков: учебник для студентов вузов по специальности "Химия" (Москва Москва: Химия).
- 3. Пригожин И. Р., Беллеманс А., Мато В., Глазов В. М. Молекулярная теория растворов (Москва: Металлургия).
- 4. Дуров В.А., Агеев Е. П. Термодинамическая теория растворов неэлектролитов: монография(Москва: МГУ им. М. В. Ломоносова).
- 5. Бокштейн Б. С., Менделев М. И., Похвиснев Ю. В. Физическая химия: термодинамика и кинетика: учебник(Москва: МИСиС).
- 6. Музыкантов В. С., Бажин Н. М., Пармон В. Н., Булгаков Н. Н., Иванченко В. А. Задачи по химической термодинамике: учебное пособие для вузов по специальности 011000 "Химия" (Москва Москва: Химия).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

1. Сопровождение учебного процесса требует применения программного обеспечения, позволяющего создавать, редактировать, представлять текстовый и иллюстративный материал, проводить мат. обработку экспериментальных данных: MSOffice (MSWord, MSExcel, MSPowerPoint).

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Научная Электронная Библиотека e-LIBRARY.RU. Режим доступа: http://elibrary.ru/.
- 2. Nature Publishing Group. -Режим доступа: http://www.nature.com.
- 3. EBSCO Journals (компания EBSCO Publishing) электронные журналы. Режим доступа: http://search.ebscohost.com
- 4. Cambridge University Press доступ к текущим выпускам журналов издательств Cambridge University Press (с 1996-2015 гг) . Режим доступа: http://www.journals.cambridge.org
- 5. Royal Society of Chemistry журналы открытого доступа. Режим доступа: http://pubs.rsc.org.
- 6. Elsevier доступ к Freedom Collection издательства Elsevier. Режим доступа: http://www.sciencedirect.com

- 7. Электронная химическая энциклопедия он-лайн. -Режим доступа: http://www.xumuk.ru/encyklopedia/.
- 8. Сайт по применению методов математической статистики и теории вероятностей в аналитической химии для обработки результатов аналитических измерений-Режим доступа: http://chemstat.com.ru/.
- 9. База данных термодинамических величин ИВТАНТЕРМО. -Режим доступа: http://www.chem.msu.su/rus/handbook/ivtan/
- 10.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Технические средства обучения для проведения лекционных занятий (мультимедийный проектор, интерактивная доска, ПЭВМ).

Учебно-лабораторное оборудование общего назначения.

Весы лабораторные XP4002S Mettler Toledo.

Спектрофотометр Specol 1300 AnalitikJena.

Рефрактометр Аббе лабораторный ИРФ-454Б2М.

Учебно-лабораторный комплекс «Химия» (ТПУ, г.Томск), включающий в себя термостат калориметр, универсальный контроллер, установка термического анализа, термодатчик, магнитная мешалка.